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Abstract An assessment study is presented about energy
decomposition analysis (EDA) in combination with DFT in-
cluding revised dispersion correction (DFT-D3) with Slater-
type orbital (STO) basis set. There has been little knowledge
about the performance of the EDA+DFT-D3 concerning
STOs. In this assessment such an approach was applied to
calculate noncovalent interaction energies and their
corresponding components. Complexes in S22 set were used
to evaluate the performance of EDA in conjunction with four
representative types of GGA-functionals of DFT-D3 (BP86-D3,
BLYP-D3, PBE-D3 and SSB-D3) with three STO basis sets
ranging in complexity from DZP, TZ2P to QZ4P. The results
showed that the approach of EDA+BLYP-D3/TZ2P has a
better performance not only in terms of calculating noncovalent
interaction energy quantitatively but also in analyzing
corresponding energy components qualitatively. This approach

(EDA+BLYP-D3/TZ2P) was thus applied further to two repre-
sentative large-system complexes including porphine dimers
and fullerene aggregates to gain a better insight into binding
characteristics.

Keywords Assessment . DFT-D3 . EDA . Noncovalent
interaction . STO

Introduction

Noncovalent interaction is ubiquitous in a wide variety of
chemical [1], physical [2], and biological processes [3]. It is
the main origin of stability for many cases from gas to liquid
and solid. Examples include, but are certainly not limited to,
solvation, ionic liquid, crystallization, asymmetric catalysis,
bulk-phase properties, self-assembly of various size supramo-
lecular, nanomaterials, chromatographic separation, micelle
formation, molecular recognition, as well as the structure
and function of biomolecules from simple peptides to
enzymes and DNA. There are many types of noncovalent
interactions including hydrogen bond, halogen bond, van der
Waals contact, π-π, etc. However, with respect to these dif-
ferent intermolecular interactions, their strength and nature
would be quite different.

Conventionally, the term “noncovalent interaction” is used
here to encompass contributions from electrostatic, induced
dipole, dispersion energy, etc. In investigations of noncovalent
interactions the supermolecular ab initio calculations have
become very popular tools. The total noncovalent interaction
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energy ΔE can be readily computed from the complex and
fragments as:

$E ¼ E ABð Þ � EðAÞ � EðBÞ: ð1Þ
Nevertheless, it is often desirable to obtain a reasonable and

clear description of the component interaction energies contrib-
uting to the total noncovalent interaction energy when we need
a deeper insight into the physical nature of this interaction. To
achieve this goal, a variety of interaction energy decomposition
schemes have been proposed [4–18], most of which fall into
two categories, namely, the perturbation methods [11–15] and
supermolecular methods [16–18]. The former is represented by
symmetry-adapted perturbation theory (SAPT) while the latter
by extended transition state (ETS).

In the usual SAPT method, the interaction energy can be
expressed as:

$E ¼ Eð1Þ
elstat þEð2Þ

disp þEð2Þ
ind þEð1Þ

exch þEð2Þ
exch�ind þEð2Þ

exch�disp þ$ð3�1Þ:

ð2Þ
Here, Eð1Þ

elstat is the electrostatic interaction energy derived

from the electron densities of the monomers; Eð2Þ
disp is the

dispersion interaction energy required the frequency-
dependent response propagators of the two monomers; and

Eð2Þ
ind is the induction interaction energy described by static

response propagators of the monomers. These terms are

accompanied by the additional exchange termsEð1Þ
exch , E

ð2Þ
exch�ind

andEð2Þ
exch�disp , which arise due to the tunnelings of the electrons

from one monomer to the other if the electron densities of the
monomer overlap with each other. In SAPT practical scheme,
the third- or higher order contributions are usually not to be
calculated [19].

Another energy decomposition scheme based on the super-
molecular method can be performed more easily. This method
was initially proposed byKitaura-Morokuma [16, 17] and later
developed by Ziegler-Rauk [18] and now is conventionally
referred to as energy decomposition analysis (EDA), which has
turned out to be extremely useful for treating noncovalent
interactions. In this scheme, the total interaction energy ΔEint
is decomposed into a number of physically meaningful com-
ponents (if the dispersion term is considered):

$Eint ¼ $Eelstat þ $Epauli þ $Eorb þ $Edisp: ð3Þ
Here, ΔEelstat gives the electrostatic interaction energy

between the fragments calculated with the electron density
distribution in the complex. ΔEpauli denotes the repulsive
interactions between the fragments which are caused by the
fact that two electrons with the same spin cannot occupy the
same region in space. ΔEorb accounts for the stabilizing
orbital interaction energy as a result of the inter-atomic
orbital overlapping. ΔEdisp measures the dispersion energy

of intermolecules. An essential advantage of the EDA method
is that it provides a complete energy description of a complex,
not only the intermolecular interaction but also intra-molecular
interaction which is unable to be treated by the SAPT ap-
proach. Therefore, we believe EDA to be a good and promis-
ing method for data collection and analysis.

From (2) and (3) it can be seen that some different energy
components are defined in the perturbation methods and
supermolecular methods. However, it should be noted that in
different methods determining which energy components to
use is somewhat arbitrary and without rigorous physical basis.
And there is no agreement between different methods on
which components should be considered, not to mention
comparisons of values of corresponding energy components.
Moreover, the energy components of noncovalent interac-
tions, even if calculated with highest accurate methods, have
not yet been supported by generally accepted experimenta-
tion, which remains challenging to future work. In light of
this, our interest focuses on the qualitative analysis of energy
components, rather than quantitative.

When it comes to accurate calculations of intermolecular
interaction energies, we have two issues to consider. On the
one hand, whether the result of total interaction energy is
accurate strongly depends on the method used to describe
molecular interaction. Many previous works made use of
expensive calculation methods with large basis sets to provide
accurate noncovalent interaction energies [20–26]. There is a
high computational demand and it is time consuming. For
example, the CPU time for the CCSD(T) calculation, which
is recognized as the “golden standard”, is proportional to the
7th power of the number of basis functions, while the CPU
time for the MP2 calculation, which is often used for the
evaluation of intermolecular interaction energies, is propor-
tional to the 5th power of the number of basis functions.
Unfortunately, the MP2 method overestimates the attraction
in the aromatic clusters compared tomore reliable calculations
[26]. These facts mean the application of expensive calcula-
tion methods to large systems becomes computationally pro-
hibitive. Density functional theory (DFT), which is widely
used in quantum mechanical (QM) calculations for its low
computational cost, is often inadequate in describing nonco-
valent interaction energies because it fails to treat dispersion
effects completely. Nevertheless, the DFT community has
recently developed a variety of methods for the treatment of
van der Waals (dispersion) interactions, including treatments
with i) specialized functionals, such as M05/M06 series [27,
28], ii) semiempirically dispersion corrected functionals, such
as B97D [29], iii) dispersion corrected atom centered pseudo-
potentials within the framework of KS-DFT, such as DCACP
[30], and iv) double hybrid functionals, such as B2PLYP [31].
Among these DFT approaches, the semiempirical dispersion
corrected functionals (DFT-D) approach has been developed
[26, 29, 32–34] by adding an empirical dispersion corrected
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term, which proves to be an efficient way to describe disper-
sion effects. A large number of dispersion corrected terms
have been developed for the treatment of noncovalent inter-
actions, each term specifically for different functionals, like
PBE-D, B3LYP-D etc. Very recently, the revised DFT-D
method (DFT-D3) [33, 34] was proposed as a more improved
tool to compute the dispersion energy due to its higher accu-
racy, broader range of applicability, and less empiricism.

On the other hand, accurate computations of noncovalent
interactions also require very large basis sets [24–26, 35, 36].
This is not surprising because dispersion interactions can be
expressed in terms of the polarizabilities of the weak interacting
molecules, and polarizability computations are known to re-
quire large basis sets. In order to test the effect of the Slater-type
orbitals (STOs) basis set [37, 38], we ran DFT-D3 calculations,
using the STO basis sets available in ADF software, from the
medium DZP (double-ξ, with one polarization functions) up to
very large QZ4P (quadruple-ξ with four polarization func-
tions). In QM calculations, to obtain the same level of accuracy,
one is often likely to use a smaller number of STOs than
Gaussian-type orbitals (GTOs) [39] because of the right as-
ymptotic form and correct nuclear cusp behavior.

To sum up, it is interesting and convenient for us to take the
approach of EDA in combination with the DFT-D3 with STO
basis sets to study the noncovalent interaction energy and their
energy components.

There are numerous assessment investigations [24, 33, 35,
40–48] about calculating noncovalent interaction energy by
various QM theoretical methods with various basis sets. Given
the rapid development of new DFT-D methods over the past
years, several functionals emerged as “best performances” to
treat noncovalent interactions. After an extensive and careful
review, Riley and co-workers reported that B97-D and
ωB97X-D are currently the most recommendable DFT-based
methods for noncovalent interaction energy [24]. A contrasting
accord was reached byGrimme et al., who compared old (DFT-
D2) and new (DFT-D3) variants of 11 functionals beyond the
effects of BSSE for bioorganic molecules, and they concluded
that B2PLYP-D is best overall [33, 34]; While Sherill et al.
thought that the B2PLYP-D3, B3LYP-D3, B97-D3 and PBE-
D3 methods perform well in treating noncovalent interaction
energy [35]. The latest and the most thorough assessment was
performed by Grimme on new GMTKN30 database, which
concluded that DSD-BLYP-D3 was the best functional on the
quadruple-ξ level and closely followed by PWPB95-D3 [42].

However, despite these above-mentioned assessments, it
might be noted that almost all of the calculating methods of
noncovalent interaction energy were based on the supermolec-
ular QM approaches as Eq. (1). To the best of our knowledge,
although the approach of EDA+DFT-D has been devoted to a
few investigations [41, 42, 49], still no detailed assessments
combining EDA and DFT-D3 have been reported, especially
with various DFT-D3 functionals with different STO types of

basis sets. As is well known, with the same accuracy require-
ment and the same calculatingmethods, the number of STOs is
generally smaller than that of GTOs basis set [39]. Conse-
quently, using STOs basis set instead of GTOs may improve
efficiency in practical QM calculation.

Therefore, the assessment of the approach of EDA+DFT-
D3/STOs would be of interest for further investigation. In this
paper, we evaluated the performance of EDA method with
four different but representative types of GGA-functionals of
DFT-D3 (BP86-D3, BLYP-D3, PBE-D3 and SSB-D3) with
three STO basis sets (DZP, TZ2P, QZ4P) against the bench-
mark set S22. Note that the assessment of GGA-functionals of
DFT-D3 is particularly useful because most popular QM soft-
wares support these types of functionals and a vast amount of
chemistry has been handled by GGA-functionals calculations.
The results of this assessment should be useful in accurate
computations of noncovalent interactions, not only in terms of
accuracy but also of computational cost, which is of particular
interest for large supramolecular systems. Furthermore, it can
help us gain a deeper insight into the nature of the noncovalent
interaction by analysis of the physically meaningful energy
components resulted from EDA+DFT-D3. To demonstrate
the advantage of this approach of EDA+DFT-D3, on the basis
of the assessment results, we further applied this approach to
two representative large-system examples of porphine dimers
and fullerene aggregates.

Methods

We choose the S22 database as test set. S22 set is a key and
most popular database provided by Hobza and co-workers
[20], which contains 22 dimers of various types (hydrogen
bond, dispersion dominated and mixed). Table 1 lists their
detailed information about dimers which consists of small to
medium-sized (30 atoms) complexes of common molecules
containing C, N, O, and H, with single, double, and triple
bonds. Moreover, S22 database consists of high-accuracy
geometries and their CCSD(T)/CBS interaction energies.

As previously discussed, to evaluate the noncovalent inter-
action energy of complexes, we adopted the EDA method
proposed by Kitaura–Morokuma and developed by Ziegler–
Rauk [16–18], combined with four GGA-levels DFT-D3
functionals at three basis sets. Specifically, this approach
follows three steps to integrate dispersion energy into density
functionals: i) EDAwith DFT functionals is implemented with
ADF 2012.01 [50] without particular regard for dispersion
correction, and three components can be obtained: the elec-
trostatic ΔEelstat, the pauli repulsion ΔEpauli and the orbital
interaction ΔEorb. ii) The dispersion correction term coupling
with their corresponding DFT functionals are calculated re-
spectively with program dftd3 available on Grimme’s website
[33, 34], and the dispersion energy ΔEdisp can be obtained.
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Note the damping function uses BJ-damping scheme
instead of zero-damping because DFT-D3 (BJ) is on
average slightly better than DFT-D3 (zero) for typical
noncovalent interactions [51]. iii) Combining results i)
and ii) into total interaction energy, and the result is
expressed by Eq. (3). Therefore, the interaction energies
and their corresponding components of physical mean-
ing are calculated completely for each complex at each
level of theory. As we have noticed, while this article
was being written up, some usual DFT-D3 functionals are
already supported by the latest version of ADF package.
Nevertheless, our procedure is more flexible with controls
and can provide more details about dispersion energy.

The performance of the approach (EDA+DFT-D3) for a
given test set is evaluated by comparing the interaction
energy of each complex with that of its reference CCSD
(T)/CBS value, as:

xref ¼ ðxDFT�D3 � xCCSDðTÞ=CBSÞ=xCCSDðTÞ=CBS : ð4Þ

A most popular measure of these relative errors is denoted
as mean absolute error (MAE) and is expressed as:

MAE ¼ 1
n

Xn

ref

xref
�� ��; ð5Þ

where | xref | is the absolute value of results from (4) and n
means the total quantity of complexes in subgroups (i.e.,
hydrogen bond, dispersion dominated, mixed) of test sets.

On the other hand, among these energy components, the
ΔEdisp and ΔEelstat are particularly important because they
are commonly employed in various energy decomposition
schemes and moreover, they are applied to determination of
the dimer types. To check whether the energy components
calculated by different combinations (EDA of DFT-D3 and
STOs) are reasonable or not, the ratios of ΔEdisp/ΔEint and
ΔEelstat/ΔEint are plotted and compared (see Figs. 1, 2, 3).
Here, instead of using ΔEdisp and ΔEelstat, the ratios of
ΔEdisp/ΔEint and ΔEelstat/ΔEint are used to eliminate the mag-
nitude difference of dispersion and electrostatic energy

Table 1 Energy components contribution to total noncovalent interaction energy ΔEint from EDA (BLYP-D/TZ2P) and total noncovalent
interaction energy ΔEccsd(T) from CCSD(T)/CBS for the different types of complexes (all data in kcal mol-1)

ΔEint
a) ΔEdisp ΔEelstat ΔEorb ΔEpauli ΔEccsd(T)

b)

Hydrogen bonded complexes

(NH3)2 −3.01 −1.08 −4.93 −1.70 4.70 −3.17

(H2O)2 −5.08 −0.78 −7.85 −3.85 7.40 −5.02

formic acid dimer −19.39 −3.00 −31.96 −25.56 41.13 −18.61

formamide dimer −16.23 −3.10 −24.72 −15.51 27.10 −15.96

uracil dimer −20.84 −4.03 −29.38 −18.46 31.03 −20.65

2-pyridoxine·2-aminopyridine −17.96 −4.78 −27.84 −17.07 31.73 −16.71

adenine· thymine WC −17.21 −5.11 −27.38 −16.30 31.58 −16.37

Dispersion dominated complexes

(CH4)2 −0.51 −1.03 −0.17 −0.22 0.91 −0.53

(C2H4)2 −1.43 −2.43 −1.10 −0.63 2.73 −1.51

benzene· CH4 −1.53 −2.60 −1.21 −0.71 2.99 −1.50

PD benzene dimer −3.55 −7.94 −3.51 −1.26 9.16 −2.73

pyrazine dimer −4.97 −8.14 −4.68 −1.97 9.82 −4.42

uracil dimer −10.45 −11.05 −9.06 −2.94 12.60 −10.12

stacked indole·benzene −5.67 −11.27 −5.75 −2.05 13.40 −5.22

stacked adenine· thymine −12.14 −15.53 −11.50 −4.17 19.06 −12.23

Mixed complexes

ethene·ethyne −1.74 −1.22 −1.60 −1.11 2.19 −1.53

benzene·H2O −3.21 −2.58 −2.15 −1.83 3.35 −3.28

benzene·NH3 −2.31 −2.64 −1.50 −1.14 2.97 −2.35

benzene·HCN −4.48 −3.42 −2.81 −2.91 4.66 −4.46

T-shaped benzene dimer −2.87 −4.41 −1.97 −1.39 4.90 −2.74

T-shaped indole·benzene −5.57 −5.97 −3.66 −3.09 7.15 −5.73

phenol dimer −6.97 −4.84 −8.60 −4.96 11.43 −7.05

a) ΔEint ¼ ΔEelstat þΔEpauli þΔEorb þΔEdisp; ΔEdisp and ΔEint have only three significant digits to be showed here

b) ΔEccsd(T) calculated at CCSD(T)/CBS from ref [20]

4580 J Mol Model (2012) 18:4577–4589



calculated for various dimers with different strengths of
noncovalent interaction. Next, a reasonable assessment of
ΔEdisp and ΔEelstat is performed. As we know, a total of 22
complexes in S22 set are divided into three subgroups,
which is generally accepted: seven hydrogen bond com-
plexes predominantly by electrostatic interactions, eight
complexes predominantly by dispersion interactions and
seven complexes in which the contribution of electrostatic
and dispersion interactions are considered to be similar. For
example, in the NH3 dimer, ΔEdisp is qualitatively not im-
portant and the total interaction energy is dominated by
ΔEelstat, which is a characteristic of a hydrogen bond com-
plex. The C2H4 dimer represents the other extreme where
the interaction energy asymptotically is given by ΔEdisp

while ΔEelstat is smaller, which is a feature of a complex of

dispersion dominated characteristic. So, it can be qualita-
tively estimated that whether ΔEelstat and ΔEdisp calculated
by different combinations (EDA of DFT-D3 and STOs) are
located in reasonable range. We believe that both dispersion
and electrostatic contribution resulted from appropriate
combinations of DFT-D3 functionals with STO basis sets
would be restricted within the reasonable range, and will
lead to correct classifications of types of complexes by
ΔEelstat and ΔEdisp; while inappropriate combinations may
seriously deviate either ΔEelstat or ΔEdisp from the reasonable
range and may lead to wrong classifications. Consequently,
the match between the generally-accepted classifications
against S22 set and our classifications determined by varying
dominant energy resulted from different EDA+DFT-D3/STOs
was made.

Fig. 1 Comparisons of ratios of dispersion energy ΔEdisp/ΔEint and
electrostatic energy ΔEelstat/ΔEint for hydrogen bond subset from EDA
with the different GGA-functionals of DFT-D3 at different STO basis

sets. The X-axis coordinate represented a series of complexes in hydrogen
bond subset in S22. For more details see Table 1

J Mol Model (2012) 18:4577–4589 4581



Results and discussion

The object of this paper is two fold. The first purpose of this
study, a benchmarked one in quantity, is to assess the accuracy
of this approach to predict noncovalent interaction energy,
that is, to study how the GGA-functionals including dis-
persion correction with different STO basis sets influence
the results of the total interaction energy calculated by
EDA methods. A comprehensive list of total interaction
and each energy component for S22 set are available in
Table 1, which are calculated by EDA+BLYP-D3/TZ2P.
Details of other GGA-functionals results are not listed but
their MAEs are collected in Table 2.

The second goal is to assess in quality the match between
the generally-accepted classifications and our classifications
by using the ratio of ΔEdisp/ΔEint and ΔEelstat/ΔEint. However,

as we have pointed out, so far there has been no accurate value
of energy components calculated by theoretical methods and
validated by experiment results. Thus, we use the term reason-
able instead of accurate in discussion of energy components.
Based on the achievement of these two goals, we can compre-
hensively understand the performance of EDA+DFT-D3/STOs
and find the best combination of this method.

Hydrogen bond complexes

Now, let us discuss the total noncovalent interaction ener-
gies from EDA+DFT-D3 results compared with those from
CCSD(T)/CBS. With the DZP basis set, all four DFT-D3
severely overestimate the interaction energies by MAE>0.1
or close to 0.1, which indicate these methods fail to describe
the hydrogen bond interaction at this basis set level. With

Fig. 2 Comparison of ratios of dispersion energy ΔEdisp/ΔEint and
electrostatic energy ΔEelstat/ΔEint for dispersion dominated subset from
EDA with the different GGA-functionals of DFT-D3 at different STO

basis sets. The X-axis coordinate represented a series of complexes in
dispersion dominated subset in S22. For more details see Table 1
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the TZ2P and QZ4P basis set, BLYP-D3 seems to have a
better performance (MAE<0.05) than those of the BP86-D3,
PBE-D3 and SSB-D3 in predicting interaction energy. How-
ever, the latter three DFT-D3 are sufficient to estimate the
energy for hydrogen bond complexes in whichMAE<or ≈0.1.
Note the MAEs change marginally with the increase of basis
set size from TZ2P to QZ4P, whereas the MAE for SSB-D3
even increases when the basis set size is increased from TZ2P
to QZ4P. This observation gives us confidence to conclude that
BLYP-D3 with the TZ2P or QZ4P basis set can provide
reliable results. Certainly, more costly computation is required
for QZ4P basis set level.

Next, it can be readily seen from Fig. 1, that in each
hydrogen bond complex, the electrostatic ratio ΔEelstat/ΔEint

is much larger than the dispersion one ΔEdisp/ΔEint, indicating

that the former dominates over the latter. The results are
consistent with the description of complexes of hydrogen
bond type in the above discussion (i.e., ΔEelstat>ΔEdisp). The
ratios of ΔEelstat/ΔEint and ΔEdisp/ΔEint are relatively reason-
able by these four DFT-D3 methods (BLYP-D3, BP86-D3,
PBE-D3 and SSB-D3) with three STO basis sets. The results
are favorable mainly because ΔEelstat is far larger than the
ΔEdisp in hydrogen bond complex. In addition, the data points
of ΔEdisp/ΔEint at the different STO levels overlap because
they are close to each other, as shown in Fig. 1.

Considering the above results from both ΔEint and
ΔEelstat/ΔEint, ΔEdisp/ΔEint, we hold that all four functionals
EDA+DFT-D3 at TZ2P or QZ4P are sufficient to calculate
satisfactorily noncovalent interaction energies and their energy
components of hydrogen bond complex.

Fig. 3 Comparison of ratios of dispersion energy ΔEdisp/ΔEint and
electrostatic energy ΔEelstat/ΔEint for mixed subset from EDA with the
different GGA-functionals of DFT-D3 at different STO basis sets. The

X-axis coordinate represented a series of complexes in mixed subset in
S22. For more details see Table 1

J Mol Model (2012) 18:4577–4589 4583



Dispersion dominated complexes

As can be seen from Table 2, with DZP basis set, the EDAwith
the four DFT-D3 methods (BLYP-D3, BP86-D3, PBE-D3 and
SSB-D3) fails to qualify the interaction energy of the disper-
sion dominated complexes. While with the basis sets of TZ2P
and QZ4P, the MAEs of the PBE-D3, BP86-D3 and SSB-D3
methods are large (>0.10), and their order of increase of MAEs
is the following as PBE-D3<BP86-D3<SSB-D3. These data
suggest that the functionals/basis sets mentioned above might
be inappropriate for calculating complexes involving predomi-
nated dispersion. Fortunately, the much better performances of
BLYP-D3 with TZ2P and QZ4P are evidently seen such that
MAEs are found respectively to be≈0.08 and≈0.10, both
errors being roughly equal or slightly smaller by about 10 %.
Interestingly, increasing the basis set results in larger errors for
the dispersion dominated complexes than those for the hydro-
gen bond complexes. This is perhaps not surprising in that
polarizability (to which dispersion is related) is known to be
difficult to converge with respect to basis set. Thus, the in-
creasing complexity of basis set does not necessarily bring
more accurate results for noncovalent interaction.

Secondly, when we consider complexes dominated by
dispersion, the first glance at Fig. 2 informs that the difference
between ΔEelstat/ΔEint and ΔEdisp/ΔEint is not clearer
than hydrogen bond complexes. This is because the disper-
sion term is merely slightly larger than electrostatic term in the
complexes predominated by dispersion. i) As shown in Fig. 2,

calculated by all four DFT-D3 calculated at DZP basis set,
most data points of ΔEdisp/ΔEint are located below or near
those of ΔEelstat/ΔEint, which indicates the ΔEelstat term is
larger than or almost equal to ΔEdisp. The results suggest these
methods with DZP basis set fail to agree on the features in
these complexes (i.e., ΔEdisp>ΔEelstat). ii) Both the BLYP-D3
and BP86-D3 with TZ2P or QZ4P have illustrated that data
points of ΔEelstat/ΔEint are below data points of ΔEdisp/ΔEint

from Fig. 2. They show a quite satisfactory distinctive results
for complexes dominated by dispersion. iii) When the basis
set size is increased to TZ2P and QZ4P level, PBE-D3 and
SSB-D3 methods perform a bit worse than BLYP-D3 and
BP86-D3 because two wrong data points where ΔEdisp/ΔEint

is smaller than ΔEelstat/ΔEint are observed. Therefore, there is
convincing evidence that BLYP-D3 and BP86-D3 with TZ2P
or QZ4P are more reasonable than PBE-D3 and SSB-D3 with
TZ2P or QZ4P in analysis of ΔEdisp and ΔEelstat qualitatively
for dispersion dominated complexes. And EDA+BLYP-D3/
TZ2P is sufficient either in terms of predicting total interaction
energy quantitatively or analyzing corresponding energy com-
ponents qualitatively.

Mixed complexes

Firstly, for all four DFT-D3 with DZP basis set that we have
tested, there is a remarkable failure to calculate the interaction
energy for mixed complexes because of the poor prediction of
both hydrogen bond and dispersion dominated interactions.

Table 2 Comparison of MAEs
for the S22 benchmark set and
its subset by EDA with the
different GGA-functionals of
DFT-D3 at different STO basis
set; along with the results
from S22+ set by SAPT-DFT/
aug-cc-pVTZ

a) The results of SAPT-DFT/
aug-cc-pVTZ and corresponding
CCSD(T)/CBS (equilibrium
geometry dimers in S22+) are
provided by Hesselmann [19],
but do not include the large
complexes of pyrazine dimer
and 2-pyridoxine·2-
aminopyridine

DZP TZ2P QZ4P aug-cc-pVTZ

Hydrogen bond 0.090 0.037 0.041

BLYP-D3 Dispersion dominated 0.625 0.081 0.108

Mixed 0.321 0.039 0.028

Overall 1.036 0.157 0.177

Hydrogen bond 0.154 0.085 0.074

PBE-D3 Dispersion dominated 0.971 0.168 0.138

Mixed 0.569 0.068 0.105

Overall 1.694 0.321 0.317

Hydrogen bond 0.107 0.075 0.076

BP86-D3 Dispersion dominated 1.009 0.233 0.250

Mixed 0.507 0.042 0.045

overall 1.623 0.350 0.371

Hydrogen bond 0.183 0.079 0.117

SSB-D3 Dispersion dominated 1.139 0.298 0.323

Mixed 0.802 0.063 0.288

Overall 2.124 0.440 0.728

Hydrogen bond 0.034

SAPT-DFTa) Dispersion dominated 0.058

Mixed 0.057

Overall 0.149
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On the contrary, BLYP-D3 at TZVP/QZ4P does well for
prediction of interaction energies in the mixed complexes,
since it gives balanced high accuracy for hydrogen bond and
dispersion dominated interactions. Somewhat to our surprise,
the MAEs of the BP86-D3 with TZ2P or QZ4P for mixed
complexes are less than those for dispersion dominated com-
plexes and even those for hydrogen bond complexes. Also,
PBE-D3 and SSB-D3 with TZ2P behave similarly and obtain
rather successful results compared with those of CCSD(T)/
CBS. These interesting results are actually not due to the
methods of BP86-D3, PBE-D3 and SSB-D3 for adequate
treatment of dispersion or electrostatic term for mixed com-
plexes, but rather due to calculating errors of their two terms
being counteracted in these methods. Another reasonmight be
due to a compensation of errors, that is to say, a good balance
comes from favorable cancellation of errors between the basis
set and the theoretical approach (e.g., electron correlation and
dispersion term). Both factors may act simultaneously, hence
leading to an eventually significant error decrease.

Secondly, in mixed types of complexes, no reliable regu-
larity can be given as to which should have a bigger value
betweenΔEelstat and ΔEdisp. Therefore, we will not discuss this
point like we have done in the two previous cases. For the
result of this EDA+DFT-D3 approach also see Fig. 3.

Comparison of accuracy between basis sets of STO
and GTO

Since the small STO basis set DZP tends to show very big
errors for intermolecular energies, only STO basis sets of
TZ2P and QZ4P are discussed here. Table 3 summarizes the
mean absolute deviation (MAD) of noncovalent interaction
energy between the approach of EDA+DFT-D3 with STO
basis set and that of supermolecular-method+DFT-D3 with
GTO basis set. The latter approach based on Eq. (1) is a
general and popular way to calculate the noncovalent interac-
tion energy. In Table 3, theMADs fromEDA+BLYP-D3with
TZ2P and QZ4P indicate slightly bigger errors than those

from supermolecular-method+BLYP-D3 with def2-QZVP in
ref [33]. Considering the large gain in computational efficien-
cy for STO basis set, the error from EDA+BLYP-D3 is
entirely acceptable. Meanwhile, it also suggests that EDA+
BLYP-D3/TZ2P can be considered as a good choice for the
study of noncovalent interactions and can be expected with
reasonably accurate results. Overall, the EDA+BP86-D3 and
supermolecular-method+BP86-D3 show similar perfor-
mance, with MADs of 0.61 (TZ2P), 0.59 (QZ4P) and 0.62
(def2-QZVP) kcal mol−1, respectively. Also, the EDA+PBE-
D3 and supermolecular-method+PBE-D3 yield similar errors,
with MADs of 0.61 (TZ2P), 0.60 (QZ4P) and 0.62 (def2-
QZVP) kcal mol−1, respectively. However, both BP86-D3 and
PBE-D3 have the bigger errors (>0.5 kcal mol−1) and are
somewhat unacceptable. By the way, EDA+SSB-D3 also
shows bigger errors, especially with QZ4P basis set.

It is well recognized that the EDA+DFT-D3 with STO
basis set (TZ2P or QZ4P) are sufficient to provide similar
accurate results relative to supermolecular-method+DFT-D3
with very large GTO basis set def2-QZVP.

Comparison of EDA+BLYP-D3/TZ2P(QZ2P)
with SAPT-DFT/aug-cc-pVTZ

We choose the results of EDA+BLYP-D3/TZ2P to compare
with the latest results for equilibrium geometry dimers in S22+
set of SAPT-DFT/aug-cc-pVTZ provided by Hesselmann [19].
The SAPT-DFT calculations were done using the localized and
asymptotically corrected LPBE0AC exchange correlation po-
tential for the monomer calculations and Becke97 (B97) hybrid
xc functional for the supermolecular calculations. It is useful to
make a comparison of EDAmethods with more familiar SAPT-
DFT methods in order to assess their performance. From
Table 2, SAPT reproduces fairly well the ΔEint by CCSD(T)
/CBS. On all and subsets, the errors for those at the SAPT-DFT/
aug-cc-pVTZ level are slightly smaller than those at the BLYP-
D3/TZ2P and BLYP-D3/QZ4P levels except for mixed subset.

With regard to the energy component analysis [19, 52], the
ratios of energy component ΔEelstat/ΔEint and ΔEdisp/ΔEint from
the EDA+BLYP-D3/TZ2P (QZ4P) for complexes in S22 have
a similar trend to those from the SAPT-DFT/aug-cc-pVTZ (see
Fig. 4), which support that the EDA+BLYP-D3/TZ2P(QZ4P)
can also produce reasonable evaluation of energy component for
noncovalent dimers. By the way, note that the dispersion energy

is calculated by ΔEdisp ¼ Eð2Þ
disp þEð2Þ

exch�disp from SAPT-DFT

results.

Summary of assessment results

Through comparison with available CCSD(T)/CBS bench-
marks of S22 set, the performance of EDA in combination
with the four GGA-type DFT-D3 at three STO basis sets are

Table 3 Mean absolute deviations (MADs) between the approach of
EDA+DFT-D3 in conjunction with STO basis set and the approach of
supermolecular-method+DFT-D3 in conjunction with GTO basis set. a,b)

STO GTO

TZ2P QZ4P def2-QZVP

BLYP-D3 0.30 0.27 0.23

BP86-D3 0.61 0.59 0.62

PBE-D3 0.61 0.60 0.62

SSB-D3 0.68 1.12

a) All values are in kcal mol-1 and based on the S22 benchmark set

b) MADs of supermolecular-method+DFT-D3 with def2-QZVP basis
set from ref [33]
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assessed for hydrogen bond, dispersion dominated and mixed
subsets. In terms of the noncovalent interaction energies in
quantitative calculation as well as their ΔEelstat and ΔEdisp in
qualitative analysis, we recommend the combination of the
EDA+BLYP-D3/TZ2P, which gives the best reproduction of
CCSD(T)/CBS energies and good reasonable values of ΔEelstat
and ΔEdisp for the S22 set.

Examples of intermolecular interactions

Encouraged by the satisfactory performance of EDA together
with BLYP-D3/TZ2P in reasonably describing energy com-
ponents and in accurately calculating interaction energies in
various types of complexes, we further apply this approach to
two representative large-system complexes in order to get a
better insight into the binding characteristics. Porphine dimers
and concave-convex complexes involving C60 are chosen for
study, whose large π-systems represent difficulties for their
important dispersion to be accounted correctly by general QM

methods. We believe that this approach (EDA+DFT-D3/
TZ2P) is a rational and alternative way to compute these
complexes.

Porphine dimers

Porphine dimers are among the most important polar aromatic
molecules not only due to their biological functions, but also
their outstanding spectroscopic and photophysical properties
[53–56]. Especially, the so-called π-π stacking between por-
phine monomer units is often believed as dispersion dominat-
ed interactions that have significant influence on structure
formation and properties [49].

Although much is known about the physical and chemical
properties of free porphine and its metal complexes [57], only
a few reports are available about the intermolecular interaction
of the dimer without a central metal atom. Various dimer
structures like parallel displaced and T-shaped structures are
found in solid state and have also been investigated [49].
Figure 5 sketches the representative orientation of three por-
phine dimers. Herein, the total interaction energies and their

Fig. 4 Comparison of ratios of dispersion energy ΔEdisp/ΔEint and elec-
trostatic energy ΔEelstat/ΔEint by EDA+BLYP-D3/TZ2P(QZ2P) with
those of SAPT-DFT/aug-cc-pVTZ for hydrogen bond subset as well as
dispersion dominated subset. The results of SAPT-DFT are provided by

Hesselmann [19], but do not include the large complexes of pyrazine
dimmer and 2-pyridoxine·2-aminopyridine. Note that ΔEdisp ¼ Eð2Þ

disp þ
Eð2Þ
exch�disp in SAPT-DFT method. The X-axis coordinate represented a

series of complexes in mixed subset in S22. For more details see Table 1

Fig. 5 Structures of porphine dimers 1∼3 optimized at the B97D/TZV
(2df,2dp) level (atom H is not shown); These structures were obtained
from ref [49]

Table 4 Total noncovalent interaction energies ΔEint and their energy
components by EDA at BLYP-D3/TZ2P for porphine dimers 1∼3 (in
kcal mol-1)

ΔEint ΔEdisp ΔEelstat ΔEorb ΔEpauli ΔEint
a)

1 −20.75 −37.70 −12.53 −3.06 32.54 −22.10

2 −22.37 −41.03 −17.16 −6.21 42.03 −25.00

3 −9.60 −11.93 −4.73 −3.49 10.55 −10.30

a) Calculated at the B2PLYP-D at TZV(2df, 2dp)level from ref [49]
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component are calculated using the EDA method together
with BLYP-D3/TZ2P, which are based on the optimized ge-
ometries at the B97D/TZV(2df,2dp) level provided by Mück-
Lichtenfeld [49]. The total interaction energies resulted from
EDA+BLYP-D3/TZ2P are much closer to the value from
B2PLYP-D (see Table 4), while the latter is believed to be a
more accurate theoretical method for noncovalent interactions
but more costly computationally. As demonstrated by EDA
analysis, it is not surprising to observe that the dispersion
contributions are absolutely essential and important for the
binding of all investigated structures of porphine dimers,
which reflects the stabilization of these clusters is dominated
by dispersion attraction contribution. The same cases were
observed by another EDA method in ref [49]. Meanwhile, the
dimers of sandwich and parallel-displaced havemuch stronger
binding strengths than that of T-shaped for the latter has
smaller van der Waals interactions. Similar findings were also
noted in polycyclic aromatic systems [58]. This observation is
different compared with that from benzene dimers of small
size π-electronic systems [59], which showed the benzene
dimers of T-shaped and parallel-displaced have much stronger
binding strengths than the sandwich.

Concave–convex complexes involving C60

The supramolecular complex of concave-convex type involv-
ing C60 continues to be a very active area of research [60–64],
with their construction of self-organized electro-active nano-
structures as main driving forces. The interactions in these
concave-convex complexes are unusual because the π orbitals
between curved aromatic hosts and guests are both highly
polarized, which suggests that these interactions might play a
distinct role in the stabilization of the complexes [63–65].
However, the nature of these types of interactions has not been
clearly answered. There is a need to estimate the binding
energies and their energy component contribution by reliable
methods. In this work, the three complexes are optimized at
B97D/6-31+g(d,p) theory of level, performing on the Gauss-
ian 09 suite [66] (see Fig. 6). Shown in Table 5 and Fig. 6, the
varied trends of the binding constants Ka from 1H NMR
experiment [62] are in accord with those of the total interaction
energy from this approach of EDA+BLYP-D3/TZ2P,

increasing in the order of C<B<A. Unfortunately, in this case,
the exact noncovalent interaction compared with the experi-
ment is not obtained by this approach. This may be attributed
to the fact that the calculations are performed in the gas phase
without taking into account solvent effects. The EDA results
show that the binding energy has more contribution from
dispersion energy ΔEdisp and less from electrostatic energy
ΔEelstat. While the orbital interaction ΔEorb has few contribu-
tions to the stability of the complexes because the π orbitals do
not overlap with each other well between the curved surfaces.
These EDA results give us confidence in the validity of the
conclusion that the electrostatic and the dispersion force are
substantially operative on these systems.

Conclusions

The performance of EDA method with four types of DFT-
D3 GGA-functionals (BP86-D3, BLYP-D3, PBE-D3 and
SSB-D3) with three STO basis sets (DZP,TZ2P and QZ4P)
is tested against the benchmark set S22. Overall, the EDA
method at BLYP-D3/TZ2P level yields noncovalent interac-
tion energies that are very close to the best CCSD(T)/CBS
reference data, and there is distinct advantage in providing
reasonable corresponding energy components. Thus, the
EDA method at BLYP-D3/TZ2P level is a rational choice
for treating the noncovalent interaction systems (particularly
when involving the dispersion force), not only in terms of
accuracy but also of computational cost. We therefore rec-
ommend it to the treatment of larger unsaturated systems.
Two cases of large unsaturated systems, namely porphine

Fig. 6 Structures of concave-convex complexes involving C60 A∼C optimized at the B97D/6-31+g(d,p) level

Table 5 Total noncovalent interaction energies ΔEint and their energy
components by EDA at BLYP-D3/TZ2P for the concave-convex com-
plex A∼C involving C60 (in kcal mol-1)

ΔEint ΔEdisp ΔEelstat ΔEorb ΔEpauli Ka/M
-1 a)

A −35.48 −64.93 −28.90 −14.68 73.03 3000±120

B −33.92 −65.17 −27.68 −13.21 72.14 1540±150

C −30.39 −57.44 −22.69 −11.31 61.05 790±50

a) Binding constant Ka/M
-1 by 1 H NMR from ref [62]
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dimers and concave-convex complexes involving C60, are
considered here. In these two selected cases, we partition the
interaction energies into the most relevant contributions
from dispersion, electrostatics and orbital in order to provide
qualitative insights into the binding characteristics. Further
investigations into more types of functionals of DFT-D3 are
currently being carried out in our group.
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